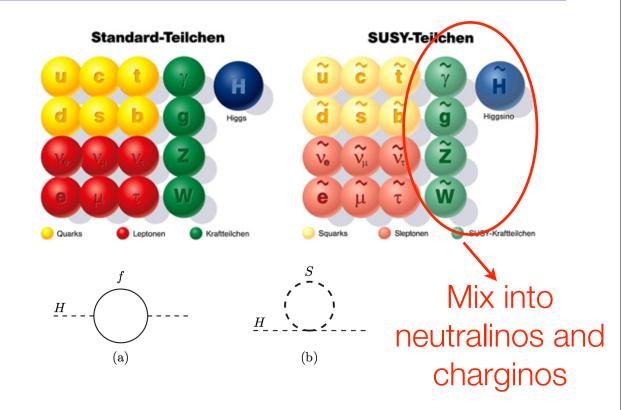
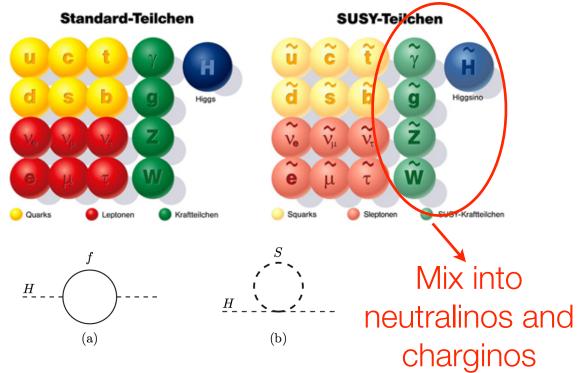

SUSY and the LHC: She was not around the corner

Iacopo Vivarelli Albert-Ludwigs Universität - Freiburg

Extend the Standard Model?


- The Standard Model is working fine. Why fix it?
 - a) The Higgs sector suffers from quadratically divergent loop corrections (high level of finetuning)
 - b) Cosmological data call for a dark matter candidate: no such candidate is present in the SM
 - c) Moreover, no further unification between the EW and QCD possible, no explanation for EW symmetry breaking, no easy way to include gravity, etc.
- Supersymmetry (SUSY) offers an elegant solution for a), which can simultaneously address b) and c)

Supersymmetry (SUSY)

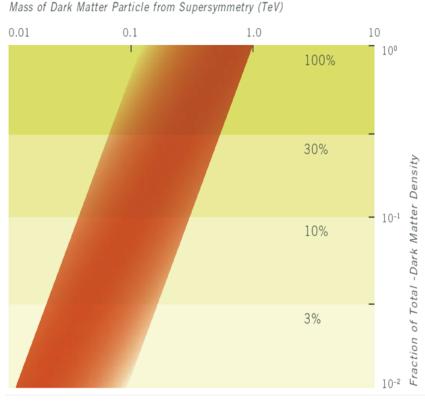

- SUSY is a symmetry that relates bosons and fermions
- In the Minimal Supersymmetric Extension of the Standard Model (MSSM):
 - a new set of fields differing in spin by 1/2 w.r.t. the SM partners (hierarchy problem solved "naturally")

FREBURG

Supersymmetry (SUSY)

- SUSY is a symmetry that relates bosons and fermions
- In the Minimal Supersymmetric Extension of the Standard Model (MSSM):
 - a new set of fields differing in spin by 1/2 w.r.t. the SM partners (hierarchy problem solved "naturally")

$$W \ni \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c + \mu_iL_iH_u$$

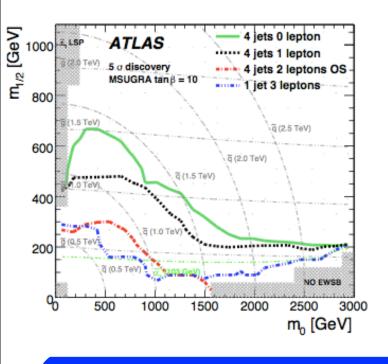

- Lepton and baryon number violation allowed → proton decay
- If R-parity conservation assumed, the Lightest Supersymmetric Particle (LSP) is stable: natural Dark Matter candidate

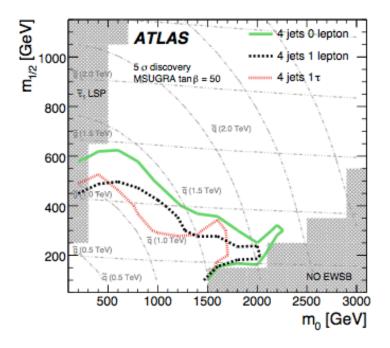
R-parity =
$$(-1)^{3(B-L)+2s}$$

-1 for sparticles
1 for particles

Why SUSY at the EW scale?

- If SUSY is realised at **some high energy scale** with no measurable effect at the EW scale, **why would we (experimentalist) care**?
- Generic arguments to expect SUSY to play a role at the EW scale:
 - Low fine tuning if M_{SUSY} ~ 1 TeV (therefore within current reach in terms of experiments at colliders)
 - WIMP miracle of dark matter:
 - Dark matter relic abundance and interaction cross section related one to the other
 - If cross section EW, then M_{dark} ~ 0.1/1 TeV

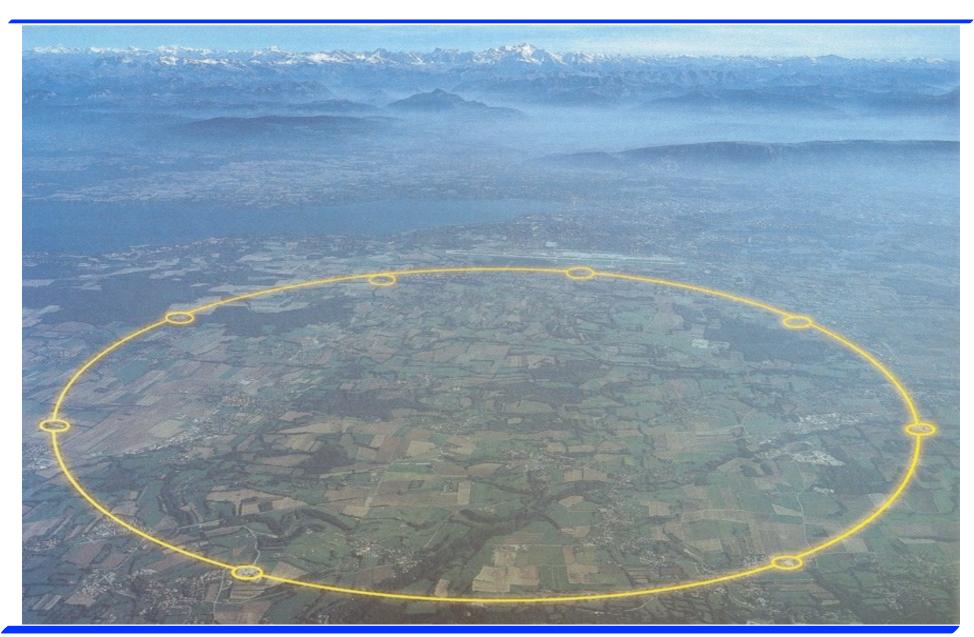



HEPAP 2006 LHC/ILC Subpanel

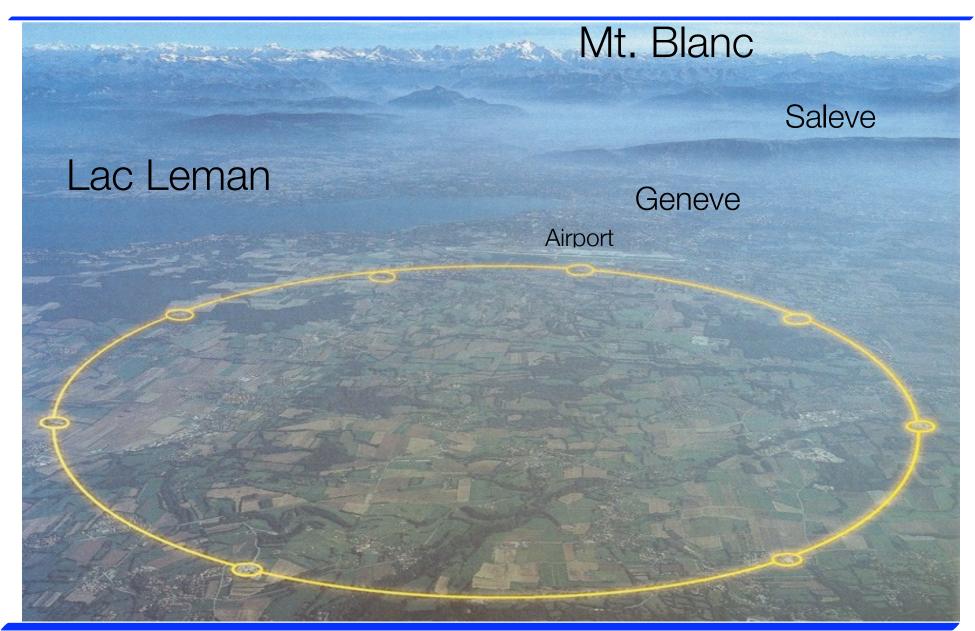
FREBURG

SUSY around the corner?

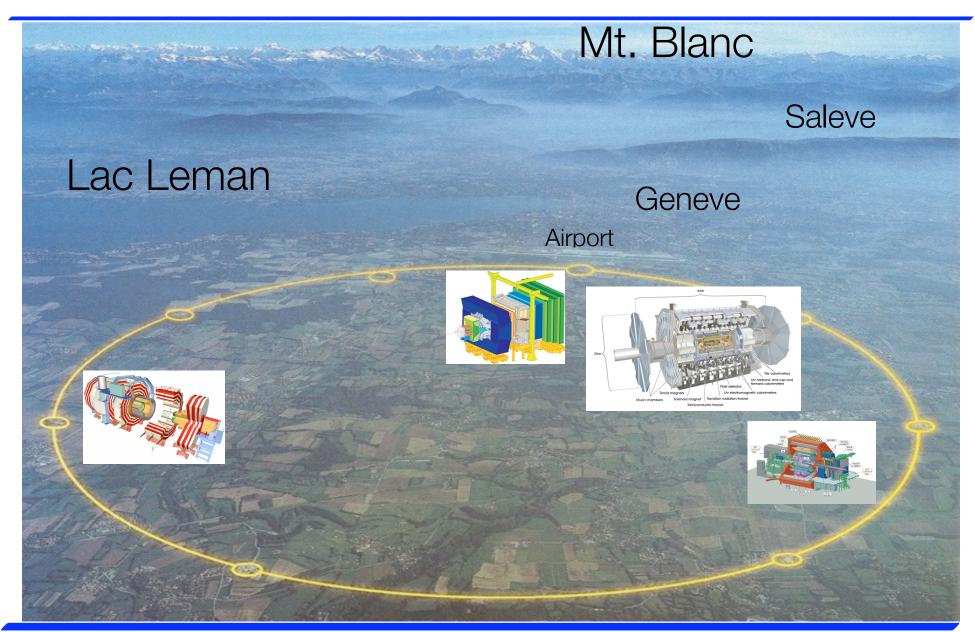
- The Large Hadron Collider has been built to:
 - 1. Fully investigate the mechanism of the EW symmetry breaking
 - 2. Break the Standard Model: find SUSY (or any other manifestation of physics beyond the standard model) at the TeV scale
- Early discovery of (EW) R-parity conserving SUSY surely possible by looking at excesses of events with large missing transverse momentum and high jet multiplicity



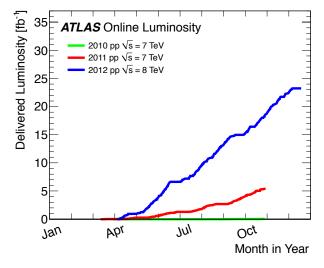
Prospect for mSUGRA/CMSSM discovery (1 fb⁻¹) before switching on LHC (√s=10 TeV)

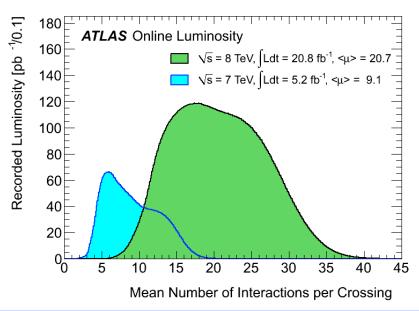

Experimental setup

6

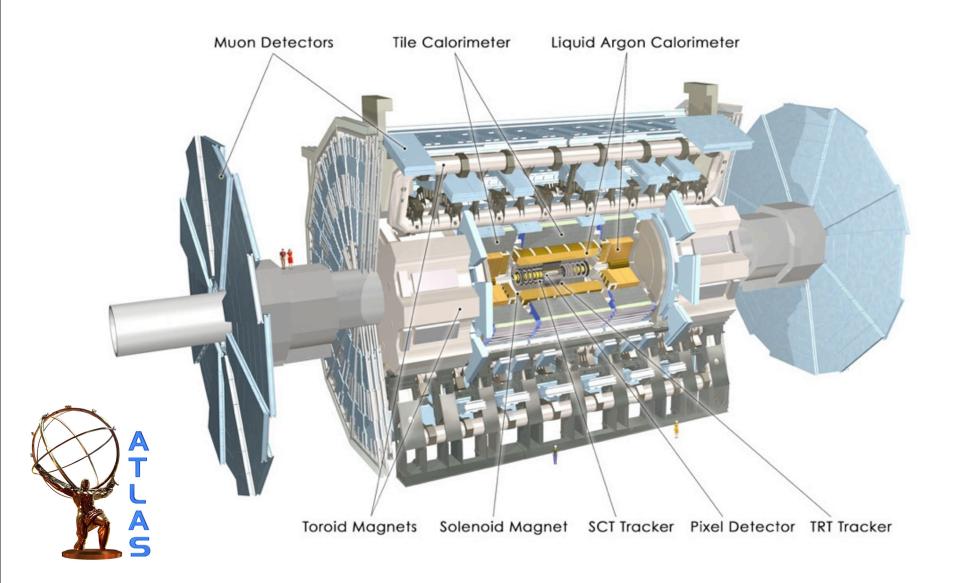


Experimental setup


Experimental setup

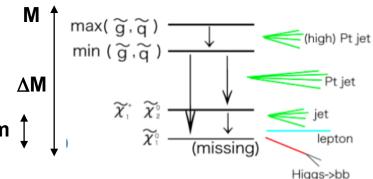

LHC - performance of the machine

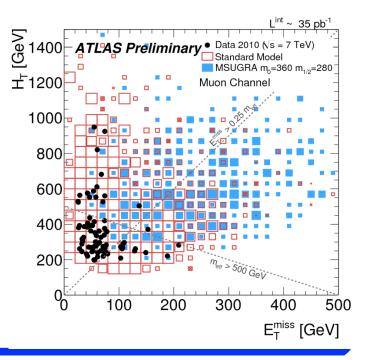
- About 22 fb⁻¹ collected at \sqrt{s} = 8 TeV and 5 fb⁻¹ at \sqrt{s} = 7 TeV (per experiment) in 2011
 - Most of which with more than 95% of the detectors operational


Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	95.0%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	98.3%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	100%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	96.0%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	98.2%

- Most of the analysis so far use 13 fb⁻¹. results being updated for the winter conferences
- Large luminosity means large pileup (higher than initially planned). Careful pileup suppression strategies developed.

The detector

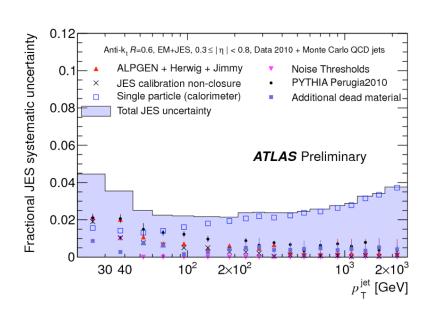


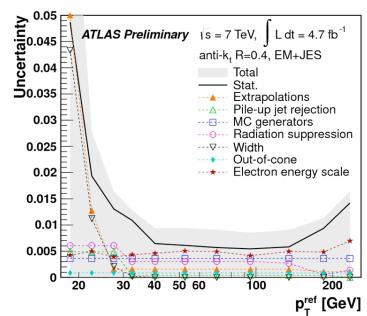

What we are typically doing

- Heavy sparticles produced in the primary collision
- They decay into lighter objects, emitting (high) P_T jets and possibly other objects (leptons, photons) and MET (LSP)
- A "typical" SUSY event will have large MET and Δm large H_T
- Useful variables:

$$H_T = \sum_{jets} p_T^{jets} (+ \sum_l p_T^l + \dots)$$
$$M_{eff} = E_T^{miss} + H_T$$

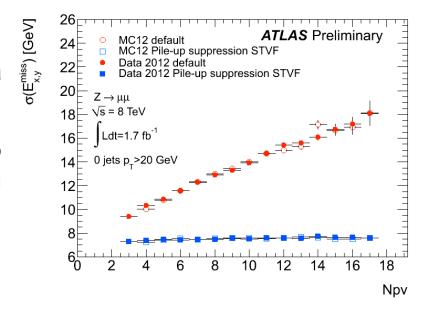
- But also other variables with well defined kinematical end point for the SM background
 - M_T (lepton-MET): end point at M_W if produced in W decay
 - M_{T2}, M_{CT}: assume pair produced heavy particles with visible and invisible decays

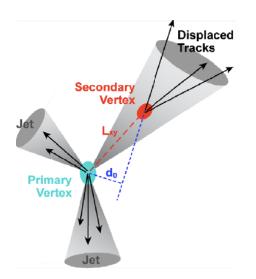


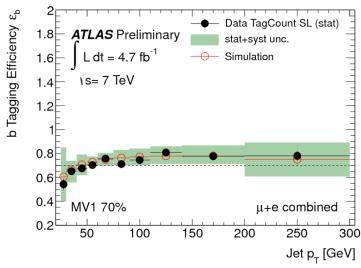


Jet measurement

- Constantly improving on jet measurement and pileup suppression techniques
- Jet energy scale (isolated jets) known at the ~1% level
- thanks to the combination of several in situ techniques (gamma/Z+jet balance, di-jet and multi-jet balance, calorimeter/track response comparison)

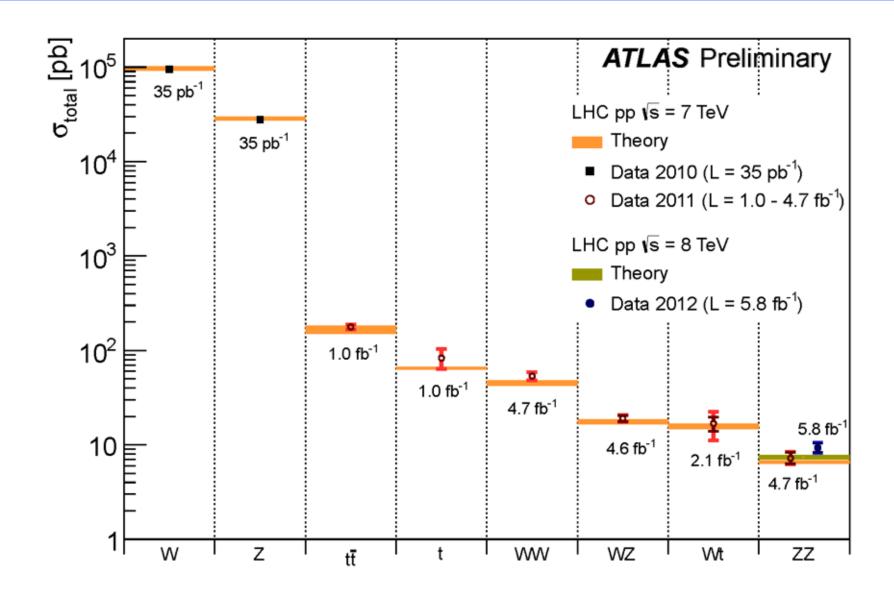




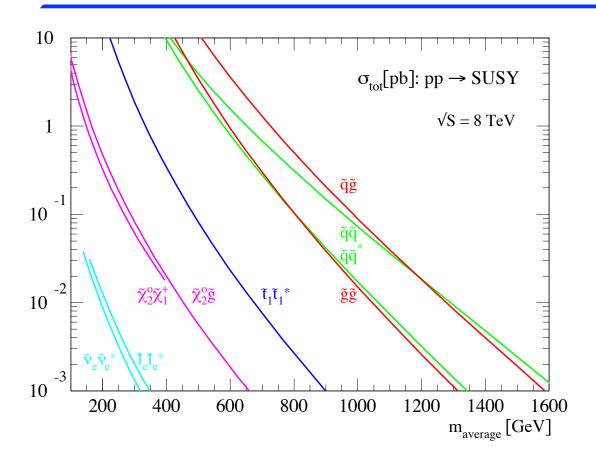


Missing transverse energy and b-tagging

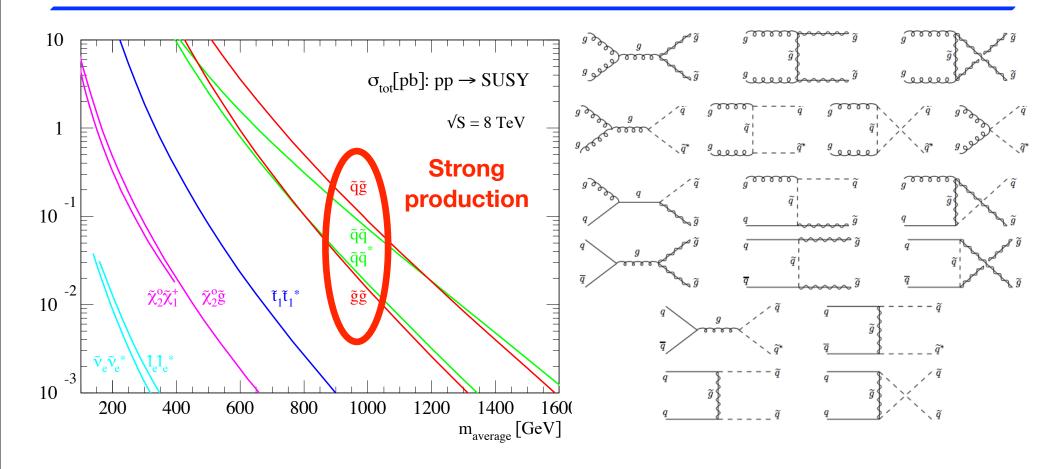
- Missing E_T (MET) reconstructed from the vectorial sum of all final state objects, each with a dedicated calibration.
- Large sensitivity of missing E_T resolution to pileup addressed by usage of tracking information in MET calculation



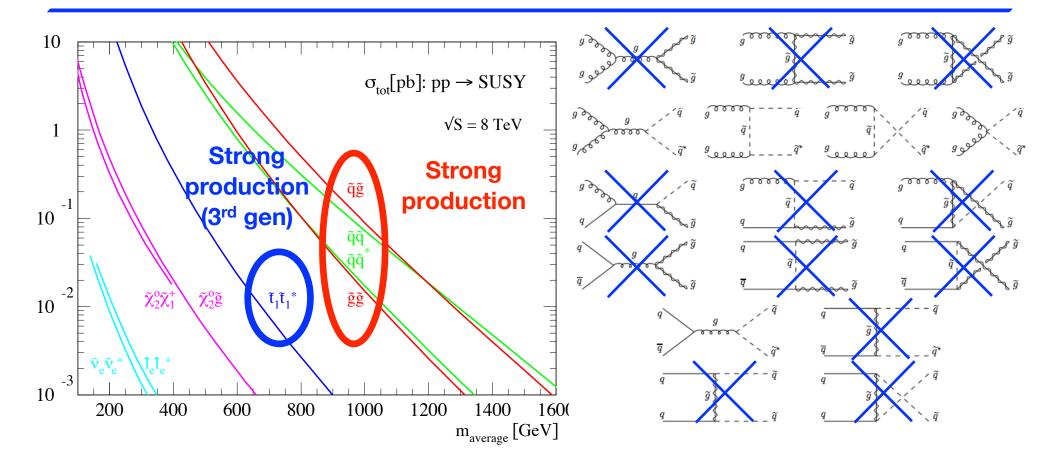
- b-tagging: neural network algorithm combining informations about secondary vertex displacement and impact parameters of jets
- efficiencies generally well reproduced by MC. Systematic uncertainties of the order of 10-15%

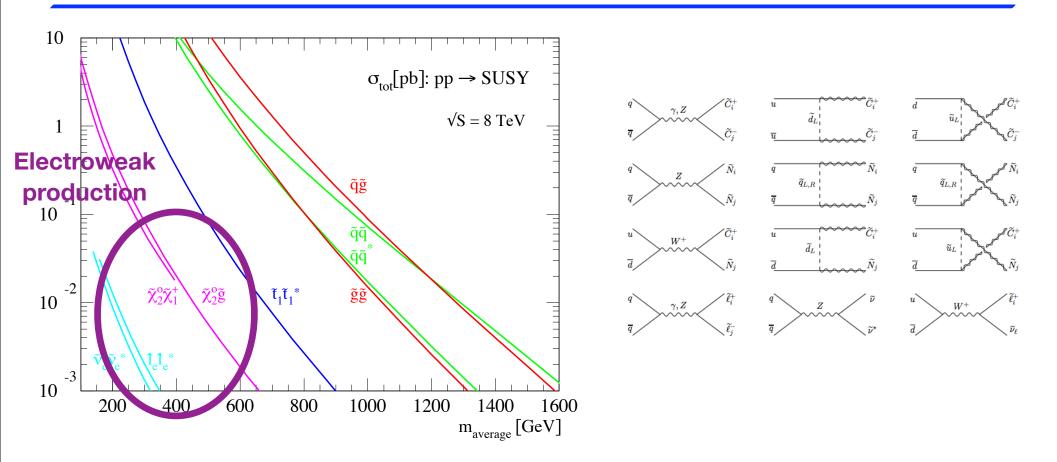


The Standard Model in one slide

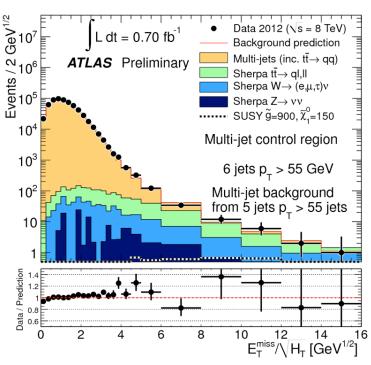


SUSY searches



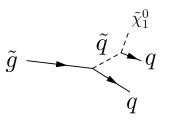


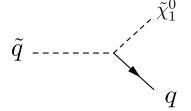
- ATLAS has set up dedicated search strategies for all production mechanism
- Only strong production (mainly 3rd generation) covered in this seminar

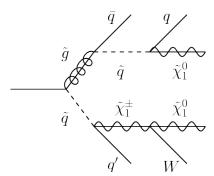

Standard Model background estimation

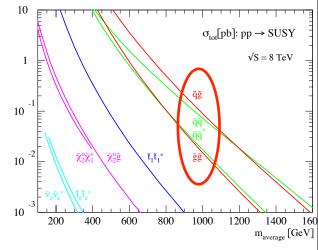
- Doing SUSY searches means primarily understanding the Standard Model background.
- Few standard strategies used all along the ATLAS SUSY analyses (centrally coordinated in the so-called background forum):
 - **Electroweak (and top) production:** rely on fixed order (or NLO) MC generators for predicting shapes of distributions:
 - Normalisation determined in dedicated control regions, shape prediction verified in the control regions and dedicated "validation" regions

Standard Model background estimation

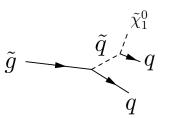

- Doing SUSY searches means primarily understanding the Standard Model background.
- Few standard strategies used all along the ATLAS SUSY analyses (centrally coordinated in the so-called background forum):
 - **Electroweak (and top) production:** rely on fixed order (or NLO) MC generators for predicting shapes of distributions:
 - Normalisation determined in dedicated control regions, shape prediction verified in the control regions and dedicated "validation" regions
- **High cross section processes** can become a relevant through mechanisms difficult to model with MC:
 - multi-jet production is a background for 0-lepton SUSY searches (through, e.g., fake MET arising from a jet mismeasurement)
 - multi-jet (W+jets) production is a background for 1-lepton
 (2-lepton) analyses if a fake lepton is present in the event
 - Dedicated data driven techniques used in such cases

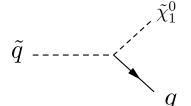


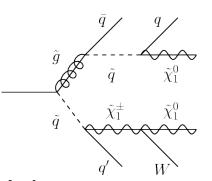

Strong SUSY production

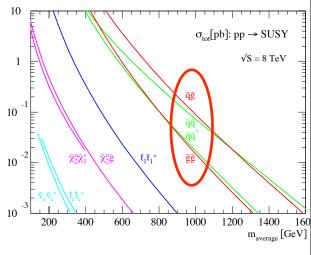


- Targeting generic strong production of gluinos and squarks.
- The exact decay chain depends on the SUSY mass hierarchy






Targeting generic strong production of gluinos and squarks.


• The exact decay chain depends on the SUSY mass

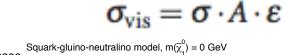
hierarchy

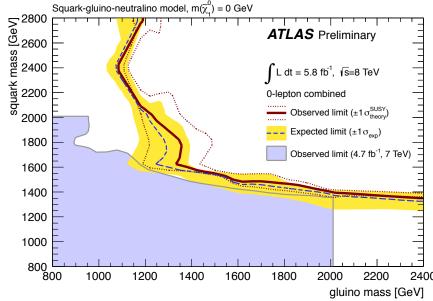
• Two analyses drive the limit with 8 TeV data

	0-lepton (ATLAS-CONF-2012-109)	1-lepton (ATLAS-CONF-2012-104)
leptons	Veto any e or µ above 10 GeV	One isolated e or μ above 25 GeV
jets	2 to 6 jets with $p_T > 60$ GeV (leading jet $p_T > 130$ GeV)	4 jets with p _T > 80 GeV
Other selections	MET > 160 GeV, reject multijet with cuts on MET/M _{eff} , and angle between jets and MET	MET > 250 GeV, M_T > 100 GeV, additional selection on MET/ M_{eff}
Final selection	M _{eff}	M _{eff}

- No excess above SM in any of the signal regions:
 - interpreted **first as a model-independent 95% C.L. limit on** σ_{vis} of BSM processes
 - then as an exclusion limit in specific SUSY models

$$\sigma_{\text{vis}} = \sigma \cdot A \cdot \varepsilon$$


1 lonton		Signal region		
	I-lepton	Electr		Muon
Observed events			10	4
Fitted background	events	9.0 ± 2	2.8	7.7 ± 3.2
Fitted tt events		6.0 ± 2	2.2	2.6 ± 1.9
Fitted W/Z+jets ev	vents	1.5 ± 0	0.7	4.2 ± 2.3
Fitted other backg	round events	1.0 ± 0	0.7	0.9 ± 0.3
Fitted multijet eve	ents	0.4 ± 0	0.6	0.0 ± 0.0
MC expected SM	events	9	9.5	11.5
MC expected tt ev	vents	:	5.7	4.6
MC expected W/Z	+jets events	2	2.4	6.0
MC expected othe	er background events		1.0	0.8
Data-driven multij	jet events	(0.4	0.0
	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{ m fb}]$	S 95 obs	S 95 exp	CL_B
Electron	1.69	9.9	9.3 ^{+3.3} 8.3 ^{+3.4}	0.59
Muon	1.09	6.4	8 3+3.4	0.19



- **No excess** above SM in any of the signal regions:
 - interpreted first as a model-independent 95% C.L. limit on σ_{vis} of BSM processes
 - then as an exclusion limit in specific SUSY models

1 lonton		Signal region	
1-lepton	Electron		Muon
Observed events	10		4
Fitted background events	9.0 ± 2.8		7.7 ± 3.2
Fitted tt events	6.0 ± 2.2		2.6 ± 1.9
Fitted W/Z+jets events	1.5 ± 0.7		4.2 ± 2.3
Fitted other background events	1.0 ± 0.7		0.9 ± 0.3
Fitted multijet events	0.4 ± 0.6		0.0 ± 0.0
MC expected SM events	9.5		11.5
MC expected tt events	5.7		4.6
MC expected W/Z+jets events	2.4		6.0
MC expected other background events	1.0		0.8
Data-driven multijet events	0.4		0.0

	$\langle \epsilon \sigma \rangle_{ m obs}^{95} [{ m fb}]$	S 95 obs	S 95 exp	CL_B
Electron	1.69	9.9	9.3+3.3	0.59
Muon	1.09	6.4	$8.3^{+3.4}_{-2.3}$	0.19

- Simpified models: assume degenerate 1st and 2nd generation squarks. The only possible production processes are gg,gq,qq
- only possible processes (depending on masses)

$$\tilde{g} \to qq\tilde{\chi}_1^0, \tilde{g} \to \tilde{q}\tilde{\chi}_1^0, \tilde{q} \to q\tilde{\chi}_1^0$$

Squark (gluino) masses below 1.3/1.4 (1.1) TeV excluded for any gluino (squark) mass

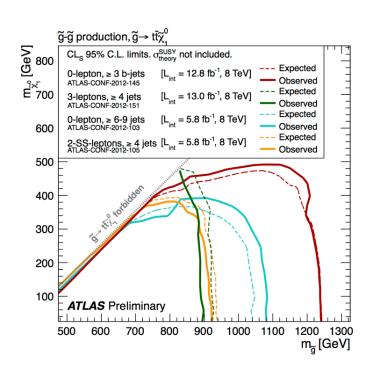
- She was not around the corner. Is she then gone?
 - Or, more specifically: is the argument of SUSY solving the SM fine tuning not an argument anymore?
- "Naturalness" in SUSY driven by the μ parameter, the stop mass (the gluino mass to a lesser extent)
- "Light" stop(s), light sbottom (left), lighter higgsinos, not-so-heavy gluinos
- Almost no constraint on the other sparticles
- The general MSSM can accommodate m_h = 125/126 GeV and keep low fine tuning (see, for example M. W. Cahill-Rowley et al., arXiv:1206.5800[hep-ph])

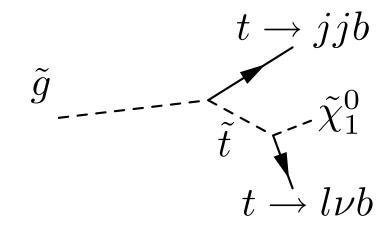
M.Papucci, J.Ruderman, A. Weiler

$$\frac{\tilde{B}}{\tilde{W}} = \frac{\tilde{L}_{i}, \tilde{e}_{i}}{\tilde{Q}_{1,2}, \tilde{u}_{1,2}, \tilde{d}_{1,2}}$$

$$\frac{\tilde{g}}{\tilde{b}_{R}}$$

$$\frac{\tilde{g}}{\tilde{b}_{L}} = \frac{\tilde{H}}{\tilde{b}_{L}}$$
natural SUSY decoupled SUSY


Gluino mediated stop production

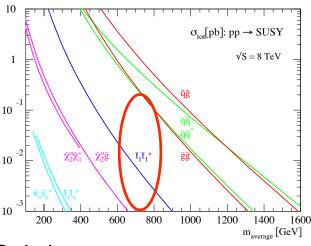

- Gluinos and stops/sbottoms the only "light" strong interacting particles:
 - gluino mediated stop/sbottom production
 - direct pair production of stops/sbottoms

FREBURG

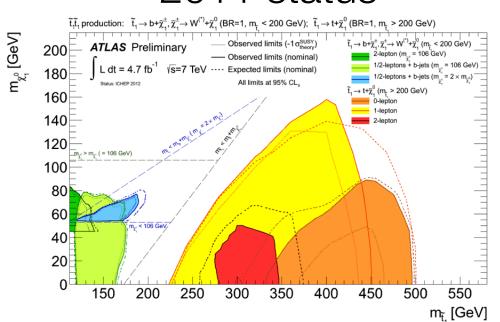
Gluino mediated stop production

- Gluinos and stops/sbottoms the only "light" strong interacting particles:
 - gluino mediated stop/sbottom production
 - direct pair production of stops/sbottoms

- If gluino pair production dominant (and only stops not too heavy), then the decay is $\widetilde{q}
 ightarrow \widetilde{t} t$
- Final state that contains MET (LSP), up to 4 b-jets, up to 12 jets, up to 4 leptons (possibly same sign)
- Three different analyses target this final state:
 - 3-b jets plus MET (up to 6 jets) ATLAS-CONF-2012-145
 - 2 SS leptons + MET + 4 jets ATLAS-CONF-2012-105
 - multijet (up to 9 jets) ATLAS-CONF-2012-103
 - 3-leptons + MET ATLAS-CONF-2012-151

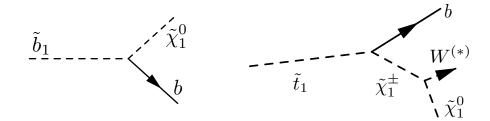

direct 3rd generation squark production

- The stops (and the sbottom left) constrained by naturalness to be not heavier than ~ 1 TeV
- Wide, dedicated effort for <u>direct stop production search</u> in ATLAS
- The t₁ decay branching ratios depend strongly on:
 - Mass hierarchy (t


 1, X

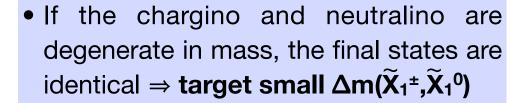
 10,X

 1±)
 - Chirality of the stop and of the X_1^0, X_1^{\pm}
- Several analyses used:
 - $\widetilde{t}_1 \rightarrow t\widetilde{X}_1^0$: 0-lepton, 1-lepton*, 2-leptons
 - $\widetilde{t}_1 \rightarrow b\widetilde{X}_1^{\pm}$: 1-lepton, 2-leptons*, 0-lepton (2b + MET)*
 - * = analyses updated for √s = 8 TeV or new


2011 status

FREBURG BURG

2 b-jets + MET


- Generic topology of many interesting physics channels:
 - In particular sbottom and stop pair production



2 b-jets + MET

- Generic topology of many interesting physics channels:
 - In particular sbottom and stop pair production

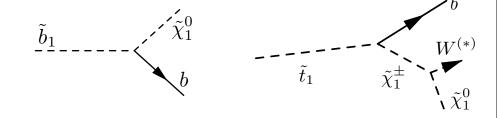
Basically two signal regions used

FREBURG

2 b-jets + MET

Generic topology of many interesting physics channels:

- If the chargino and neutralino are degenerate in mass, the final states are identical ⇒ target small Δm(X
 1[±],X
 1⁰)
- Basically two signal regions used


- m_{CT}: boost-corrected contransverse mass
 - $m_{CT}^2(b_1,b_2) = (E_T(b_1) + E_T(b_2))^2 (\mathbf{p}_T(b_1) \mathbf{p}_T(b_2))^2$
 - for pair produced particles decaying into visible and invisible particles
 - It has an end-point at (m_{prod}²-m_{inv}²)/m_{prod}²

- - Look for 2 b-jets (veto on third jet), large MET
 - Use M_{CT} to suppress top (end-point at 135 GeV)
 - Main background (at high M_{CT}): Z (→νν)+b-jets
 - SR2 is similar

PREBURG.

2 b-jets + MET

- Generic topology of many interesting physics channels:
 - In particular sbottom and stop pair production

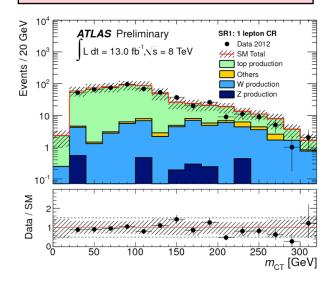
- If the chargino and neutralino are degenerate in mass, the final states are identical ⇒ target small Δm(X
 1[±],X
 1⁰)
- Basically two signal regions used

- mct: boost-corrected contransverse mass
 - $m_{CT}^2(b_1,b_2) = (E_T(b_1) + E_T(b_2))^2 (\mathbf{p}_T(b_1) \mathbf{p}_T(b_2))^2$
 - for pair produced particles decaying into visible and invisible particles
 - It has an end-point at (m_{prod}²-m_{inv}²)/m_{prod}²

- - Look for 2 b-jets (veto on third jet), large MET
 - Use M_{CT} to suppress top (end-point at 135 GeV)
 - Main background (at high M_{CT}): Z (→vv)+b-jets
 - SR2 is similar

- SR3 (for small Δ m($\widetilde{b}/\widetilde{t}$, \widetilde{X}_1 °)):
 - Focus on events with a hard ISR jet produced
 - Hard, non b-tagged leading jet, two additional b-jets
 - Veto on additional hadronic activity
 - Main background: top pair production

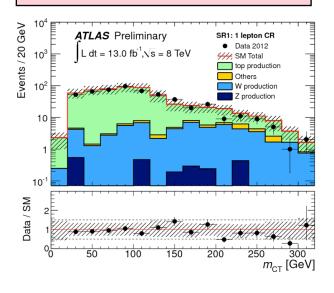
Control region definition

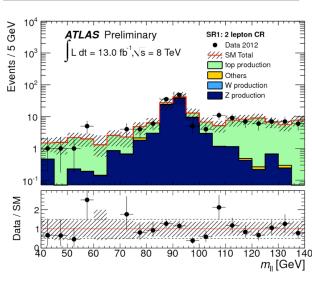

Background estimation

Control region definition

Background estimation

- top/W control region:
 - 2 b-jets
 - 1-lepton, 40 GeV < M_T < 100 GeV, similar selection as SR
 - At high M_{CT} W and top both relevant

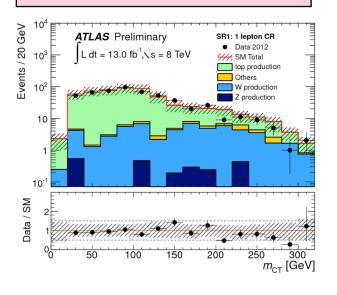


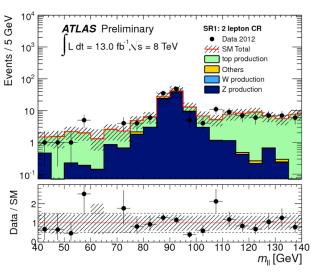

Control region definition

Background estimation

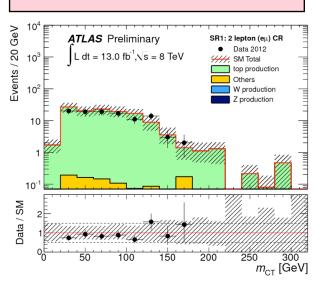
- top/W control region:
 - 2 b-jets
 - 1-lepton, 40 GeV < M_T < 100 GeV, similar selection as SR
 - At high M_{CT} W and top both relevant

- Z control region:
 - 2 b-jets
 - 2-lepton same flavour, select the Z peak
 - "Mimic" MET by "neutrinising" the leptons



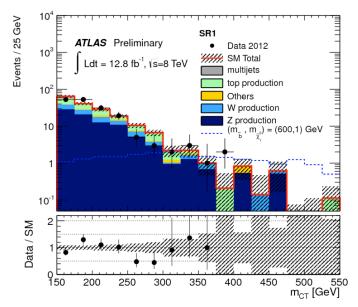

Control region definition

Background estimation


- top/W control region:
 - 2 b-jets
 - 1-lepton, 40 GeV < M_T < 100 GeV, similar selection as SR
 - At high M_{CT} W and top both relevant

- Z control region:
 - 2 b-jets
 - 2-lepton same flavour, select the Z peak
 - "Mimic" MET by "neutrinising" the leptons

- top control region:
 - 2 b-jets
 - 2-lepton different flavour
 - Very pure top control region


Control region counts and systematics

ATLAS-CONF-2012-165

Channel	CR1L_SR1	CR2L_SR1	CR2LDF_SR1
Observed events	104	102	51
Fitted bkg events	104 ± 11	102 ± 11	51 ± 7
Top production	70 ± 16	18 ± 4	50 ± 7
Z production	1.5 ± 0.4	82 ± 12	_
W production	25 ± 19	_	_
Others	8 ± 4 .	2.4 ± 1.3	0.8 ± 0.4

- Systematic uncertainties:
 - b-tagging uncertainties (~15%)
 - jet energy scale uncertainty (~10%)
 - Z production theoretical uncertainties (5%)

 Normalisation factors for the backgrounds in control regions close to 1 for top, to 1.2 for Z

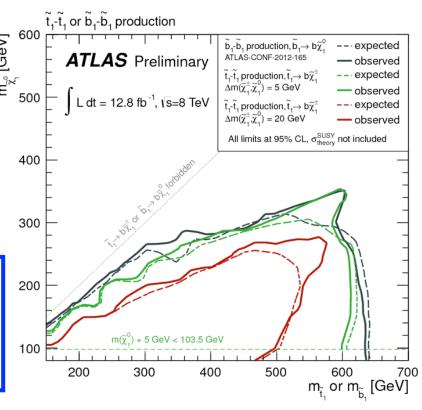
 Results compatible with SM background predictions in all signal regions

Channel		SR1, $m_{\rm CT}$ selection			SR2	SI	R3
	150 GeV	200 GeV	250 GeV	300 GeV		SR3a	SR3b
Observed	172	66	16	8	104	207	21
SM Total	176 ± 25	71 ± 11	25±4	7.4 ± 1.7	95±11	203 ± 35	27±5
Top production	45 ± 13	17±6	7±3	1.6 ± 0.6	15±4	146±40	15±5
Z production	85 ± 15	36±6	12±2	4.0 ± 0.9	60±9	27±9	7±2
W production	28 ± 23	12 ± 10	4±3	1 ± 1	15±5	22±7	4±1
Others	6±3	4±2	1.4 ± 0.8	0.7 ± 0.4	4±2	4±2	1.5 ± 0.9
Multijet production	12 ± 12	2±2	0.2 ± 0.2	0.01 ± 0.01	0.6 ± 0.6	4±4	_

0-lepton, 2-b jets stop searches

• 95% C.L. model independent upper limits on BSM event yield and σ_{vis}

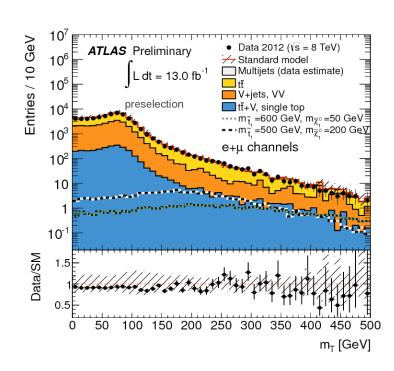
Signal region	Bkg. estimate	Obs. data	95% CL U	95% CL UL on BSM event yield		L on $\sigma_{\rm vis}$ (fb)
			expected	observed	expected	observed
SR1 ($m_{\rm CT} > 150 {\rm GeV}$)	176±25	172	55	54	4.2	4.1
SR1 ($m_{\rm CT} > 200 \; {\rm GeV}$)	71±11	66	25	22	1.9	1.7
SR1 ($m_{\rm CT} > 250 {\rm GeV}$)	25 ± 4	16	12.5	7.9	0.96	0.61
SR1 ($m_{\rm CT} > 300 {\rm GeV}$)	7.4±1.7	8	7.5	8.0	0.58	0.62
SR2	95±11	104	32	39	2.5	3.0
SR3a	203 ± 35	207	54	54	4.2	4.2
SR3b	27 ± 5	21	13.1	9.6	1.0	0.74

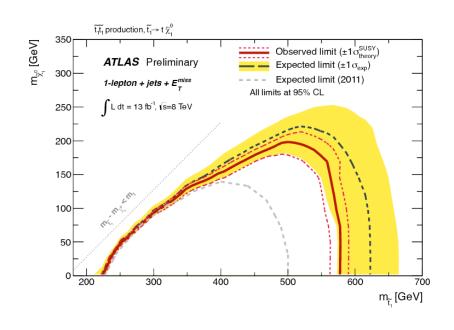


0-lepton, 2-b jets stop searches

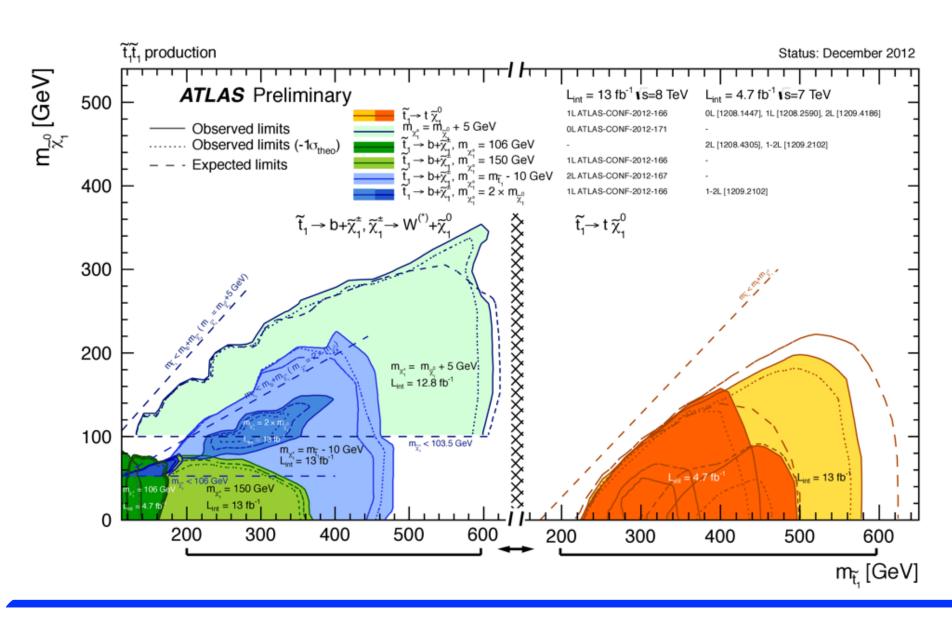
• 95% C.L. model independent upper limits on BSM event yield and σ_{vis}

Signal region	Bkg. estimate	Obs. data	95% CL UL on BSM event yield		95% CL UL on $\sigma_{\rm vis}$ (fb)	
			expected	observed	expected	observed
SR1 (m _{CT} > 150 GeV)	176±25	172	55	54	4.2	4.1
SR1 ($m_{\rm CT} > 200 {\rm GeV}$)	71±11	66	25	22	1.9	1.7
SR1 ($m_{\rm CT} > 250 {\rm GeV}$)	25 ± 4	16	12.5	7.9	0.96	0.61
SR1 ($m_{\rm CT} > 300 {\rm GeV}$)	7.4 ± 1.7	8	7.5	8.0	0.58	0.62
SR2	95±11	104	32	39	2.5	3.0
SR3a	203 ± 35	207	54	54	4.2	4.2
SR3b	27 ± 5	21	13.1	9.6	1.0	0.74


- 95% C.L. limit very similar for the sbottom and the stop case if $\Delta m(\widetilde{X}_1^{\pm}, \widetilde{X}_1^{0})$ = 5 GeV
- A clear loss of acceptance (because of lepton and jet veto) if $\Delta m(\widetilde{X}_1^{\pm}, \widetilde{X}_1^{0}) = 20 \text{ GeV}$
- t→bX₁± (BR 100%) excluded up to mt ~ 600 GeV for nearly degenerate chargino and neutralino masses



1-lepton stop searches (ATLAS-CONF-2012-166)


- Dedicated **1-lepton analysis** dominates the reach for t_1 pair production $(\widetilde{t_1} \rightarrow \widetilde{t} X_1^0)$
- Basic strategy: select top-like events with large M_T and MET.
- Main background: tt→IIbb + MET (dominant at large M_T)
- Dedicated effort to **improve the second lepton veto** (isolated tracks tau-like events)

Direct stop search summary

What is missing? (3rd gen)

- My own to-do list for the next few months/years:
 - Improve limits at high stop mass:
 - boosted top reconstruction?
- Mixed decays (50% t

 ₁→tX

 ₁
 ₀
 ₁
 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

 ₁

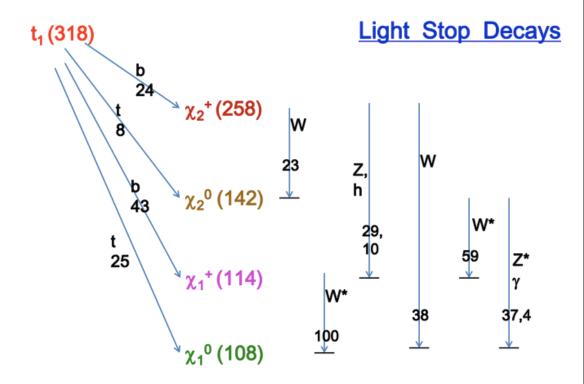
 ₁

 ₁

 ₁

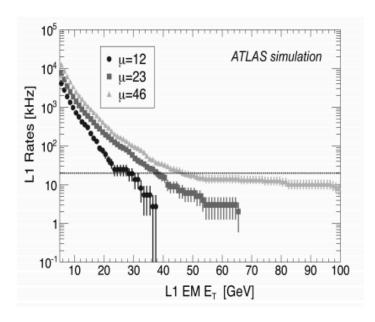
 ₁

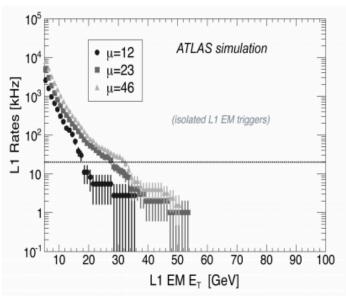
 ₁


 ₁

 ₁

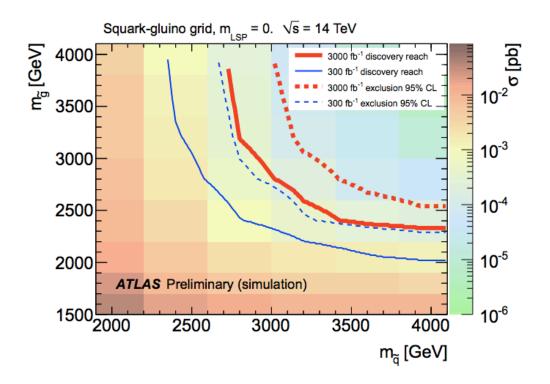
 ₁

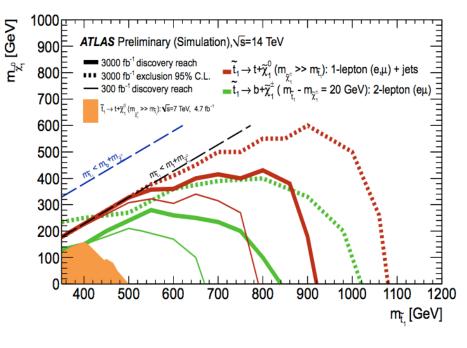

 ₁


 ₁
- Complete the investigation in the low mass region (exclude independently of the stop parameters and mass hierarchy).

Prospects for SUSY searches at 13/14 TeV

- LHC is foreseen to run at 13/14 TeV after 2015 and integrate about 300 fb⁻¹.
- Increased energy and pileup conditions (highly dependent on the bunch spacing)
 - Impact mainly on trigger conditions:
 - Short term: improve on trigger strategy trigger on topologies
 - Long term: dedicated hardware/software upgrades: improved calorimeter readout at early trigger stages, single track trigger, etc.
- Expect to deal with increased p_T thresholds at the beginning, especially for leptons (lowest unprescaled lepton trigger of p_T > 33 GeV w.r.t. current 25 GeV





Prospects with 13/14 TeV

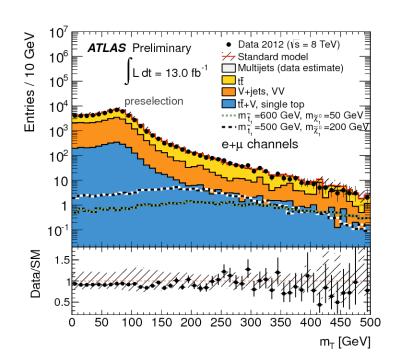
- Project the sensitivity of the analyses to 13/14 TeV
- ...assuming realistic running conditions and no improvement on the analyses (!)
- A lot still to be said about EW scale SUSY

FREBURG

Summary

- SUSY was not around the corner. Degenerate 1st and 2nd generation squarks (gluinos) are excluded up to m = 1.5 TeV (1.2 TeV) for m_{LSP} = 0.
- Searches for direct production of third generation squarks are also very well advanced.
 - Stops decaying (only) into top-LSP excluded up to ~560 GeV for massless LSP. Large fraction of the available parameter space also excluded for t→bX₁[±]
 - The 14 TeV data will allow to probe up to m_{stop} ~ 1 TeV
- The startup of the LHC has been a fruitful and exciting period for SUSY searches
 - Waiting for the 13/14 TeV running

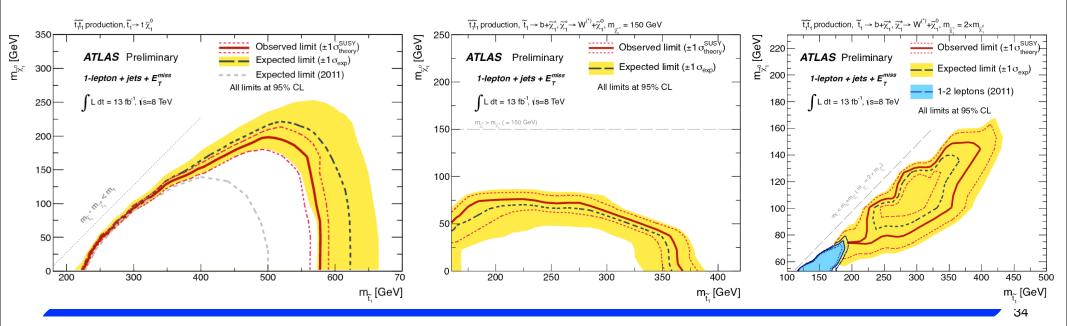
BACKUP



1-lepton stop searches (ATLAS-CONF-2012-166)

- Dedicated 1-lepton analysis dominates the reach for t₁ pair production (t₁→tX₁⁰)
- Basic strategy: select top-like events with large M_T and MET.
- Main background: tt→IIbb + MET (dominant at large M_T)
- Dedicated effort to improve the second lepton veto (isolated tracks tau-like events)

Select m_{jjj} compatible with had top decay


Requirement	SRD	SRE	SRtN1	SRtN2	SRtN3	SRbC
$\Delta\phi(j_1,\vec{p}_{\mathrm{T}}^{\mathrm{miss}}) >$	0.8	0.8	0.8	-	0.8	0.8
$\Delta\phi(j_2,\vec{p}_{\mathrm{T}}^{\mathrm{miss}})>$	0.8	0.8	0.8	0.8	0.8	0.8
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] >	225	275	150	200	225	150
$E_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	11	11	8	13	11	7
$m_{\rm T}$ [GeV] >	130	140	140	140	180	120
$m_{\rm T}$ [GeV] <	-	-	250	-	-	-
am_{T2} [GeV] >	-	-	-	170	200	-
m_{T2}^{τ} [GeV] >	-	-	-	-	120	-
$N^{\text{iso-trk}} = 0$	-	-	-	-	-	Yes
$A \times \varepsilon$ benchmark point	-	-	0.06%	0.9%	2.8%	0.7%

1-lepton stop searches

- top pair production background normalised in control region (60 GeV < M_T < 90 GeV). Same for W (anti-b-tag)
- Fake lepton background obtained with Matrix Method
- No excess in any of the signal regions.
- Result interpreted in t₁t₁ production with t₁→tX₁⁰ (BR 100%) or t₁→bX₁⁺
 (BR 100%)

Signal region definition

SR1:

- 2 b-jets (130, 50) GeV
- veto 3rd jet (above 50 GeV)
- ▶ m_{CT}> 150, 200, 250, 300 GeV

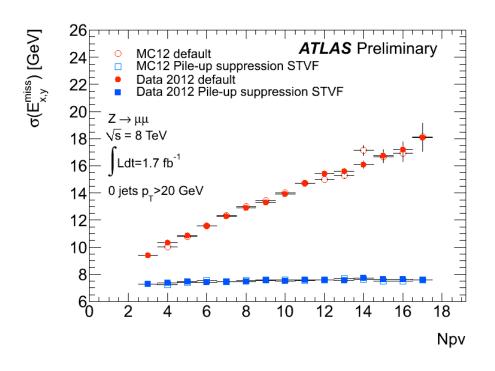
SR2:

- 2 b-jets (60, 60)
- veto 3rd jet (above 50 GeV)
- ► E_T^{miss} > 200 GeV
- ▶ m_{CT}> 100 GeV
- ► HT,2 < 50 GeV</p>

HT,2 =
$$\sum_{\text{jet}>2}^{\text{jet N}} p_{\text{T}}$$

SR3 (a):

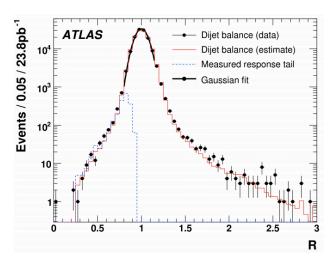
- ► ISR jet 130 GeV, anti b-tagged
- 2 b-jets (30, 30) GeV
- $\qquad \Delta \Phi(E_{\rm T}^{\rm miss}, jet1) > 2.5$
- ▶ p_T b-jet 1 < 110 GeV</p>
- ► HT,3 < 50 GeV</p>

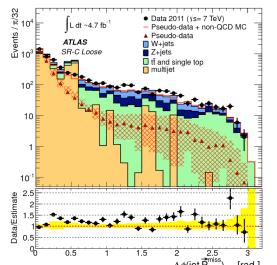

SR3 (b):

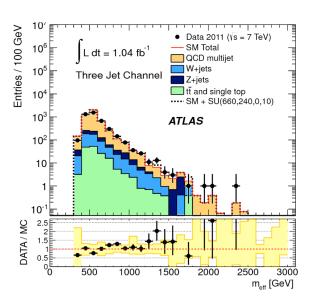

- ► all SR3(a) cuts
- ► *E*^{miss} >250
- ▶ p_T jet1 > 150 GeV

Missing transverse energy

- Missing E_T (MET) reconstructed from the vectorial sum of **all final state objects**, each **with a dedicated calibration**.
- Large sensitivity of missing E_T resolution to pileup addressed by usage of tracking information in MET calculation






Fake MET background estimate

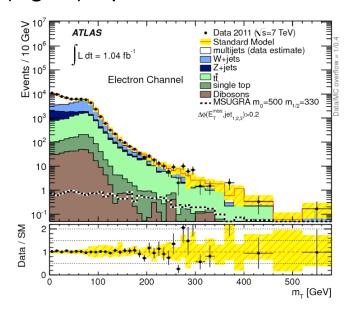
 Large MET can be induced by a jet mis-measurement. Relevant for processes with high cross section and no "real" MET (multi-jet, Z→II)

- Derive a "jet response function" from the MC and adapt it to reproduce:
 - p_T balance in di-jet events (core of response function)
 - response tail in three-jet (Mercedes) events

- Use response function to smear real data events with low MET:
 - Obtain events with large "fake" MET
- Validate them in a dedicated control region (MET aligned with one jet)

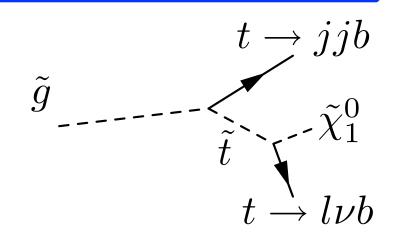
FREBURG

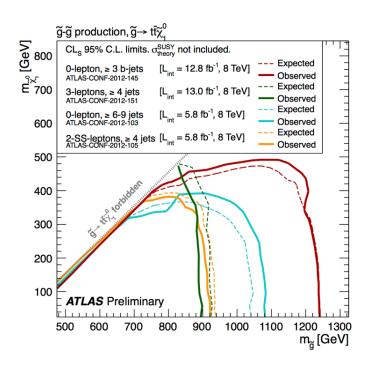
Fake lepton background estimate


- General approach to fake lepton background estimation based on a loose/tight matrix method
- Example with 1 lepton (easily extendable to multi-lepton signatures): multijet events can fake 1-lepton signatures if:
 - a lepton from a heavy flavour hadron decay passes the lepton selection
 - electrons from **photon conversions** pass the lepton selection
- Strategy: define a "loose" (pre-selected) and a "tight" (signal) lepton selection.
- Then, simply solve the following system of equations

$$N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$$
 $N^{tight} = \varepsilon_{real}N^{loose}_{real} + \varepsilon_{fake}N^{loose}_{fake}$

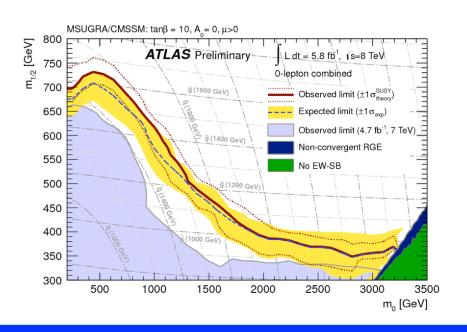
Simply count how many of them


$$N_{fake}^{tight} = \underbrace{\frac{\varepsilon_{fake}}{\varepsilon_{real} + \varepsilon_{fake}}}_{\varepsilon_{fake}} \underbrace{N^{loose}\varepsilon_{real} - N^{tight}}_{\varepsilon_{real}}$$

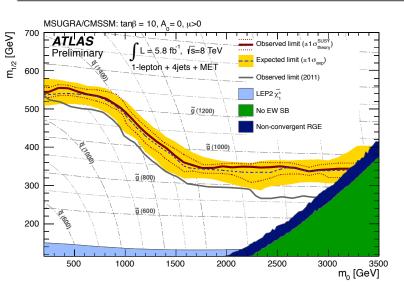


gluino mediated stop production

- Gluinos and stops/sbottoms the only "light" strong interacting particles:
 - gluino mediated stop/sbottom production
 - direct pair production of stops/sbottoms



- \bullet If gluino pair production dominant (and only stops not too heavy), then the decay is $\;\widetilde{q}\,\longrightarrow\,\widetilde{t}t\;$
- Final state that contains MET (LSP), up to 4 b-jets, up to 12 jets, up to 4 leptons (possibly same sign)
- Three different analyses target this final state:
 - 3-b jets plus MET (up to 6 jets) ATLAS-CONF-2012-145
 - 2 SS leptons + MET + 4 jets ATLAS-CONF-2012-105
 - multijet (up to 9 jets) ATLAS-CONF-2012-103
 - 3-leptons + MET ATLAS-CONF-2012-151

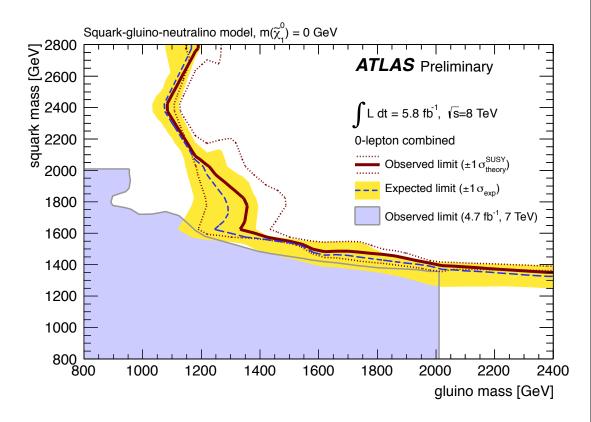

Strong production

- No excess above SM in any of the signal regions:
 - interpreted first as a model-independent 95% C.L. limit on the visible cross section of BSM processes
 - then as an exclusion limit in specific SUSY models

1 lonton	Signal region			
1-lepton	Electron	Muor		
Observed events	10	4		
Fitted background events	9.0 ± 2.8	7.7 ± 3.2		
Fitted tt events	6.0 ± 2.2	2.6 ± 1.9		
Fitted W/Z+jets events	1.5 ± 0.7	4.2 ± 2.3		
Fitted other background events	1.0 ± 0.7	0.9 ± 0.3		
Fitted multijet events	0.4 ± 0.6	0.0 ± 0.0		
MC expected SM events	9.5	11.5		
MC expected tt events	5.7	4.6		
MC expected W/Z+jets events	2.4	6.0		
MC expected other background events	1.0	0.8		
Data-driven multijet events	0.4	0.0		

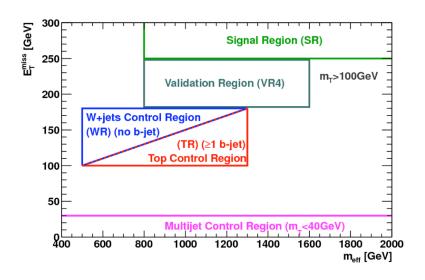
1-lepton	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{ m fb}]$	S 95 obs	S ⁹⁵ exp	CL_B
Electron	1.69	9.9	9.3+3.3	0.59
Muon	1.09	6.4	$8.3_{-2.3}^{+3.4}$	0.19

Strong production

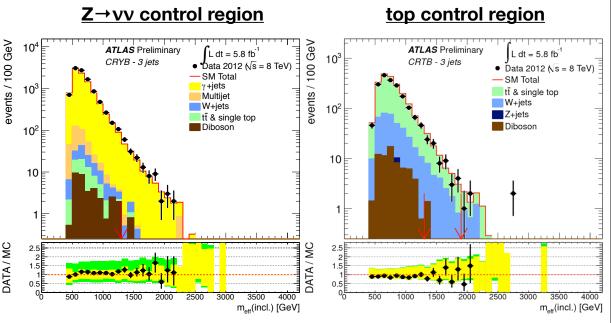

- Simplified models often used in the limit setting
 - Only a few SUSY particles play a role, all others are set to very high masses
- In this case, assume degenerate 1st and 2nd generation squarks. The only possible production processes are

$$\widetilde{g}\widetilde{g},\widetilde{g}\widetilde{q},\widetilde{q}\widetilde{q}$$

 only possible processes (depending on masses)

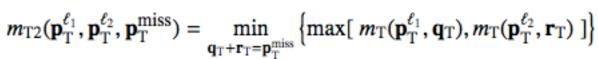

$$\tilde{g} \to qq\tilde{\chi}_1^0, \tilde{g} \to \tilde{q}\tilde{\chi}_1^0, \tilde{q} \to q\tilde{\chi}_1^0$$

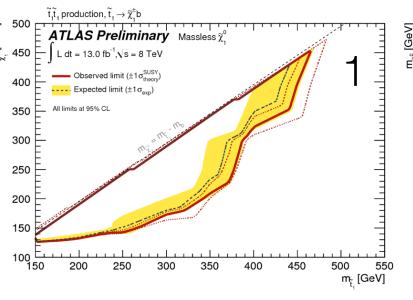
Squark (gluino) masses below 1.3/1.4
 (1.1) TeV excluded for any gluino (squark) mass

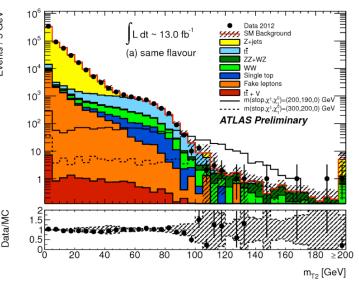


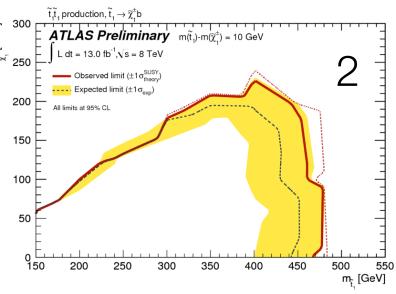
Strong production

- Main SM background processes: top pair production, W production
 - Addressed for both analyses with 1-lepton control regions (by selecting the M_T Jacobian peak)
 - W and top regions separated by the use of btagging

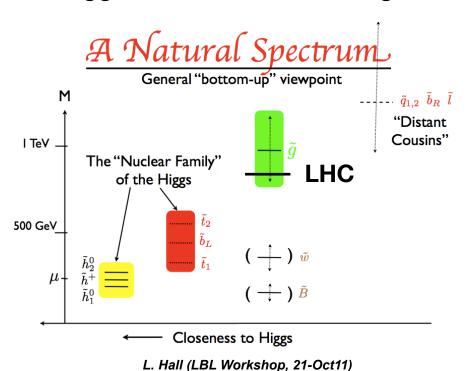

- Z→vv (for 0-lepton) addressed by using a photon + jet control region
- Multijet background addressed using the jet smearing method (0-lepton) or the matrix method (1-lepton)

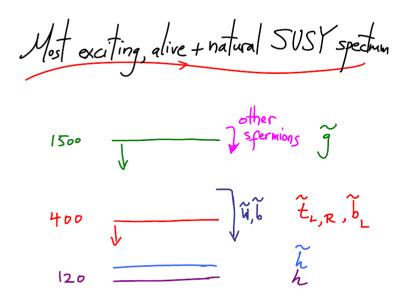



2-leptons stop searches


- A dedicated two-lepton analysis addresses best the case $t_1 \rightarrow bX_1^{\pm}$ (BR 100% and $X_1^{\pm} \rightarrow W^{\pm}X_1^{0}$) if $\Delta m(t_1, X_1^{\pm})$ not too small
- Same and different flavour leptons considered
- Main SM background: tt, WZ
- Basic variable used to reject tt, WW: M_{T2}

The exclusion limit concentrated in regions with small $\Delta m(t_1, X_1^{\pm})$

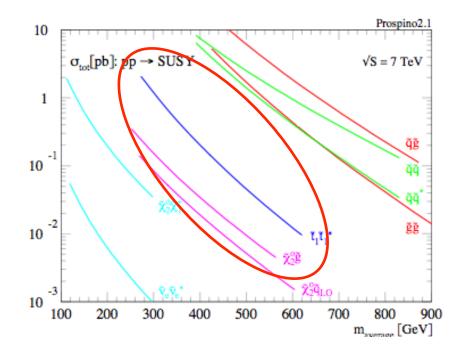




FREBURG

Is then SUSY dead?

- No! (pretty consistent theoretical view on the subject)
- Gluinos and 1st and 2nd generation squarks can be heavy, provided that the superpartners of the heavy fermions are relatively light (still "natural" hierarchy)
- Higgsinos should also be light


N. Arkani-Ahmed (CERN Workshop, 31-Oct'11)

... and this is not yet covered by LHC

3rd generation production

- The third generation squarks are special
- Mixing between L and R component of squarks proportional to the fermion partner mass → large mixing for 3rd generation squarks → generally expected to be the lightest squarks
- Previous limits on squark masses do not apply to sbottom and stop
- The stop directly counter-balance quadratically divergent top loop corrections to the Higgs mass

0-lepton results

Signal Region	A-loose	A-medium	B-medium	C-loose	C-medium	E-loose	E-medium
MC expected events							
Diboson	53.1	18.2	11.1	6.2	0.9	0.0	0.0
W+jets	264.1	53.5	51.9	62.9	16.4	2.1	1.9
Z/γ^* +jets	338.2	74.7	50.4	55.0	16.1	1.0	0.8
$t\bar{t}$ + single top	74.9	8.1	14.2	42.6	5.3	2.1	1.6
		Fi	tted backgroun	d events			
Diboson	53 ± 23	18 ± 9	11 ± 6	6 ± 4	0.9 ± 0.6	_	_
Multi-jets	0.6 ± 0.6	0.1 ± 0.1	0.2 ± 0.2	_	_	_	_
W+jets	180 ± 140	33 ± 35	32 ± 34	40 ± 40	8 ± 8	1.2 ± 1.3	0.9 ± 1.1
Z/γ^* +jets	354 ± 21	81 ± 8	59 ± 6	67 ± 6	18.5 ± 3.0	2.0 ± 1.0	0.6 ± 0.5
$t\bar{t}$ + single top	67 ± 16	7.6 ± 3.5	14 ± 5	39 ± 7	5.3 ± 2.0	2.5 ± 0.9	2.0 ± 1.4
Total bkg	650 ± 130	140 ± 33	115 ± 30	155 ± 31	33 ± 8	5.7 ± 1.7	3.5 ± 1.7
Observed	643	111	106	156	31	9	7
p ₀	0.498	0.500	0.500	0.486	0.498	0.161	0.108
UL on N _{BS M}	224.8	33.9	43.8	65.7	17.9	10.4	9.9
UL on σ_{BSM} (fb)	38.8	5.84	7.55	11.3	3.09	1.79	1.71

Signal Region	A-tight	B-tight	C-tight	D-tight	E-tight
	M	C expected	events		
Diboson	3.3	0.2	0.0	0.8	2.6
W+jets	6.6	5.6	2.1	3.4	3.3
Z/γ^* +jets	7.4	4.5	1.9	1.3	1.3
$t\bar{t}$ + single top	1.0	1.1	0.6	1.8	2.7
	Fitte	d backgrour	nd events		
Diboson	3.3 ± 3.1	0.2 ± 1.4	-	0.8 ± 0.4	2.6 ± 2.0
Multi-jets	_	_	_	0.4 ± 0.5	0.1 ± 0.2
W+jets	3 ± 4	2.7 ± 3.4	0.3 ± 0.5	_	0.8 ± 1.3
Z/γ^* +jets	6.8 ± 2.2	5.1 ± 1.7	2.0 ± 1.1	2.5 ± 1.1	1.2 ± 0.7
$t\bar{t}$ + single top	0.8 ± 0.8	0.8 ± 0.9	0.6 ± 0.5	2.6 ± 1.6	5.1 ± 3.3
Total bkg	14 ± 5	8.7 ± 3.4	2.8 ± 1.2	6.3 ± 2.1	10 ± 4
Observed	10	7	1	5	9
p ₀	0.499	0.500	0.499	0.500	0.499
UL on N_{BSM}	8.9	7.3	3.3	6.0	9.3
UL on σ_{BSM} (fb)	1.53	1.26	0.57	1.03	1.60

CR	SR background	CR process	CR selection
CRY	$Z(\rightarrow \nu\nu)$ +jets	γ+jets	Isolated photon
CRQ	QCD jets	QCD jets	Reversed $\Delta\phi(\text{jet},\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$ and $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$ cuts
CRW	$W(\to \ell \nu)$ +jets	$W(\to \ell \nu)$ +jets	30 GeV $< m_T(\ell, E_T^{\text{miss}}) < 100$ GeV, <i>b</i> -veto
CRT	$t\bar{t}$ and single- t	$t\bar{t} \rightarrow bbqq'\ell\nu$	30 GeV $< m_T(\ell, E_{\rm T}^{\rm miss}) < 100$ GeV, b-tag

Minimal SUSY extension of SM (MSSM)

- If SUSY is unbroken, M_{sparticle} = M_{particle}. Since sparticles are not yet observed, SUSY must be (softly) broken:
 - Lsusy = Lsusy conserving + Lsusy soft breaking

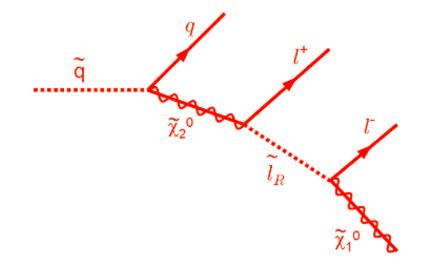
2 higgs doublets needed→ 5 Higgs bosons

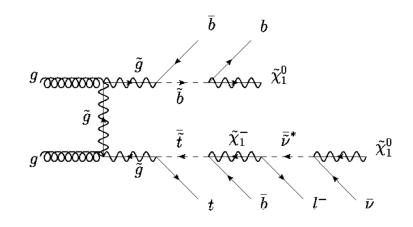
MSSM parameters:

SUSY conserving sector	SUSY breaking sector
3 coupling constants for SU(3) xSU(2)sU(1)	5 3x3 hermitian mass matrices (one per EW multiplet)
4 Yukawa couplings per generation	3 complex 3x3 matrices (Higgs trilinear couplings to sfermions)
	3 mass terms for the Higgs sector + 2 additional off-diagonal terms
	Higgs VEV expectation angle β

A total of 124 parameters.

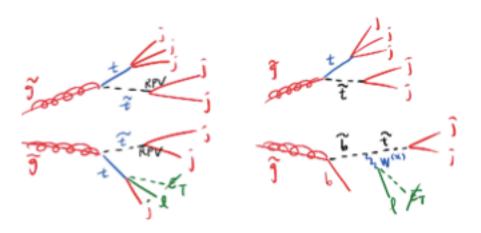
But: separate lepton number conservation, FCNC suppression, CP violation leave about 20 independent parameters

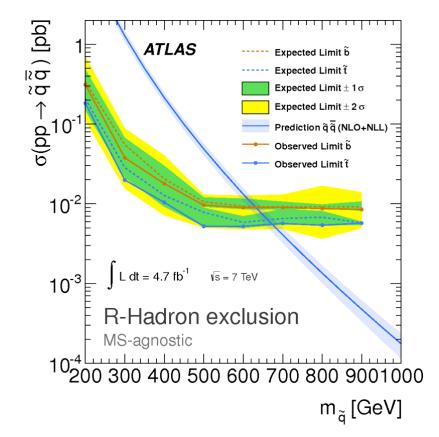

Alternatively: Precise assumptions can be made on the way SUSY is broken:


- mSUGRA/CMSSM
 - GMSB
 - AMSB

(R-parity) conserving SUSY phenomenology

- Missing E_T is the main signature (although not unique)
- General R-parity signatures:
 - The LSP (typically ~χ₁⁰ or ~ν in mSUGRA) is stable and weakly interacting (dark matter candidate) → large missing transverse momentum
 - squarks and gluinos produced in pp collision → large particle multiplicity typically produced in the decay.
- Large jet multiplicities and/or lepton produced in large regions of the parameter space (although not mandatory, e.g. pp→~q~q→qq~X10~X10)

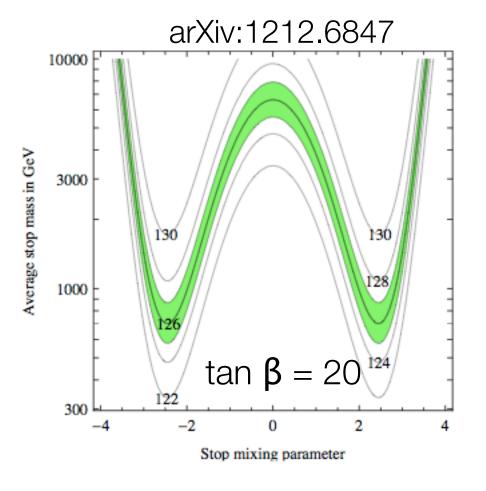




RPV stop searches

$$W \ni \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c + \mu_iL_iH_u$$

- Depending on which couplings differ from zero, one can get different signatures:
 - Highly ionising tracks (R-hadrons)
 - Two-jet resonances
 - Lot of work still to be done here

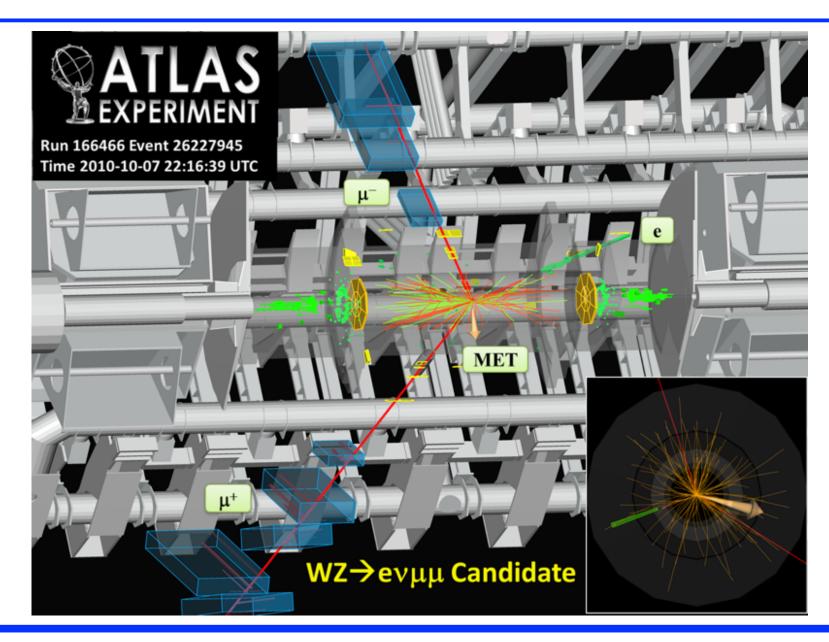


Higgs and SUSY

$$X_t = (A_t + \mu \cot \beta)/m_S$$

$$m_h^2 = m_Z^2 \cos^2 eta + rac{3y_t^2 m_t^2}{(4\pi)^2} \left[\log \left(rac{m_S^2}{m_t^2}
ight) + X_t^2 \left(1 - rac{X_t^2}{12}
ight)
ight]$$

- The Higgs mass depend on the average stop mass and X_t
- m_h=126 GeV still allows for a light t₁


ATLAS in a nutshell (II)

A dileptonic ttbar event candidate

An ATLAS event

